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1. Introduction

Quasi-normal modes (QNMs) are well known to play an important role in black hole

physics. They determine the late-time evolution of fields in the black hole exterior. After

an initial perturbation the black hole starts vibrating into quasi-normal oscillation modes

whose frequencies and decay times depend only on the intrinsic features of the black hole

itself being insensitive to the details of the initial perturbation. For these reasons, QNMs

of black holes in asymptotically flat spacetimes have been extensively studied (for reviews,

see [1, 2]).

The Anti-de Sitter - conformal field theory (AdS/CFT) correspondence has led to

an intensive investigation of black hole QNMs in asymptotically AdS spacetimes. Quasi-

normal modes in AdS spacetime were first computed for a conformally invariant scalar field,

whose asymptotic behaviour is similar to flat spacetime [3]. Subsequently, motivated by

the AdS/CFT correspondence, Horowitz and Hubeny made a systematic computation of

QNMs for scalar perturbations of Schwarzschild-AdS (S-AdS) spacetimes [4]. Their work

was extended to gravitational and electromagnetic perturbations of S-AdS black holes

in [5]. The study of scalar perturbations was further extended to the case of Reissner-

Nordström-AdS (RN-AdS) black holes in [6]. Finally, the QNMs of scalar, electromagnetic

and gravitational perturbations of RN-AdS black holes were presented in [7] using the

results of [8].

In a parallel development, exact black hole solutions in asymptotically non-flat space-

times were studied recently and solutions with scalar hair and negative cosmological con-

stant were found. Exact black hole solutions are known in three [9, 10] and four dimen-

sions [11]. For asymptotically flat spacetime, a four-dimensional black hole is also known,
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but the scalar field diverges at the horizon [12]. Also spherically symmetric black hole

solutions have been found numerically in four [13, 14] and five dimensions [15]. Spaces

with a negative cosmological constant also allow for the existence of black holes whose

horizon has nontrivial topology in four [16 – 19] and higher dimensions [20 – 23] as well as

for gravity theories containing higher powers of the curvature [24 – 27].

Recently, an exact black hole solution in four dimensions with a minimally coupled self-

interacting scalar field, in an asymptotically locally anti-de Sitter spacetime, was found [28]

(MTZ black hole). The event horizon is a surface of negative constant curvature enclos-

ing the curvature singularity at the origin. It was shown that there is a second-order

phase transition at a critical temperature below which a black hole in vacuum undergoes a

spontaneous dressing up with a nontrivial scalar field. An extension of the above solution

including a charge was presented in [29]. Aspects of the thermodynamics of the MTZ black

hole are discussed in [30]. In [31] it was shown that the four-dimensional MTZ black hole

can be uplifted to eleven dimensions in supergravity theory.

In this work, we make a perturbative study of the MTZ black hole. We compute the

simplest possible QNMs of the MTZ black hole, those of electromagnetic (EM) perturba-

tions. The computation is carried out both analytically and numerically with fairly good

agreement. The QNMs provide, near a critical temperature and for small black holes,

support for the claim that a vacuum topological black hole (TBH) goes over to a hairy

configuration, the MTZ black hole, through a second-order phase transition.

The paper is organized as follows. In section 2, we review the MTZ black hole and

its charged extension. In section 3, we discuss the thermodynamics of the MTZ and TBH

black holes. In section 4, we calculate the QNMs of the EM perturbations analytically

whereas in section 5 we present the numerical computation of the QNMs and compare

them with the analytical results of section 4. Finally, section 6 contains our conclusions.

2. Four-Dimensional Topological Black Hole with Scalar Hair

Consider four-dimensional gravity with negative cosmological constant (Λ = −3l−2) and a

scalar field described by the action

I =

∫
d4x
√−g

[
R+ 6l−2

16πG
− 1

2
gµν∂µφ∂νφ− V (φ)

]
, (2.1)

where l is the AdS radius, and G is the Newton’s constant. The self-interaction potential

is given by

V (φ) = − 3

4πGl2
sinh2

√
4πG

3
φ , (2.2)

which has a global maximum at φ = 0, and has a mass term given by m2 = V ′′|φ=0 =

−2l−2. This mass satisfies the Breitenlohner-Friedman bound that ensures the perturbative

stability of AdS spacetime [32, 33]. The field equations are

Gµν −
3

l2
gµν = 8πGTµν ,

¤φ− dV

dφ
= 0 , (2.3)
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where ¤ ≡ gµν∇µ∇ν , and the stress-energy tensor is given by

Tµν = ∂µφ∂νφ−
1

2
gµνg

αβ∂αφ∂βφ− gµνV (φ) . (2.4)

A static black hole solution with topology R2 ×Σ, where Σ is a two-dimensional manifold

of negative constant curvature, is given by [28]

ds2 =
r(r + 2Gµ)

(r +Gµ)2


−

(
r2

l2
−
(

1 +
Gµ

r

)2
)
dt2 +

(
r2

l2
−
(

1 +
Gµ

r

)2
)−1

dr2 + r2dσ2


 ,

(2.5)

and the scalar field is

φ =

√
3

4πG
Arctanh

Gµ

r +Gµ
. (2.6)

The position of the horizon is at r+, which is the solution of

Gµ =
r2

+

l
− r+ . (2.7)

For φ = 0 we get the vacuum solution (Topological Black Hole (TBH)) [16 – 19]

ds2
0 = −

[
r2

l2
− 1− 2Gµ

r

]
dt2 +

[
r2

l2
− 1− 2Gµ

r

]−1

dr2 + r2dσ2 . (2.8)

A charged black hole with scalar hair was presented in [29]. The action is given by

I =

∫
d4x
√−g

[
R+ 6l−2

16πG
− 1

2
gµν∂µφ∂νφ −

1

12
Rφ2 − αφ4

]

− 1

16π

∫
d4x
√−gF µνFµν , (2.9)

where α is an arbitrary coupling constant.

The corresponding field equations are

Gµν −
3

l2
gµν = 8πG(T φµν + T em

µν ) ,

¤φ =
1

6
Rφ+ αφ3 ,

∂ν(
√−gF µν) = 0 , (2.10)

and the energy-momentum tensor is given by the sum of

T φµν = ∂µφ∂νφ−
1

2
gµνg

αβ∂αφ∂βφ+
1

6
[gµν¤−∇µ∇ν +Gµν ]φ2 − gµναφ4, (2.11)

and

T em
µν =

1

4π

(
FµαFνβ −

1

4
gµνFγαFδβg

γδ

)
gαβ . (2.12)

The charged static black hole solution with topology R2 × Σ is given by

ds2 = −
[r2

l2
−
(

1 +
Gµ

r

)2]
dt2 +

[r2

l2
−
(

1 +
Gµ

r

)2]−1
dr2 + r2dσ2, (2.13)
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where −∞ < t <∞ and r > 0. The scalar field is

φ =

√
1

2αl2
Gµ

(r +Gµ)
, (2.14)

with α > 0 and the only non-zero component of the electromagnetic field is

At = −q
r
. (2.15)

The integration constants q and µ are not independent. They are related by

q2 = −Gµ2

(
1− 2πG

3αl2

)
. (2.16)

They correspond to conserved charges,

M =
σ

4π
µ and Q =

σ

4π
q , (2.17)

respectively, where σ denotes the area of Σ.

Eq. (2.16) fixes a charge-to-mass ratio for this black hole, which is a function of the

constants appearing in the action, G and α. Moreover, eq. (2.16) determines an upper

bound for α

0 < α ≤ 2πG

3l2
. (2.18)

If the upper bound is saturated, the charge vanishes. Then we recover the MTZ black

hole. Indeed the form of the self-interacting potential considered in (2.2) can be naturally

obtained through the relation between the conformal and Einstein frames [28].

Note that if µ = 0 then both the MTZ black hole (2.5) and the TBH black hole (2.8)

go to

ds2
AdS = −

[
r2

l2
− 1

]
dt2 +

[
r2

l2
− 1

]−1

dr2 + r2dσ2 , (2.19)

which is a manifold of negative constant curvature possessing an event horizon at r = l.

We can say that as φ→ 0 the MTZ and TBH black holes match continuously at µ = 0 or

r = l with (2.19) being a transient configuration as it becomes apparent in the following.

In the sequel we set l = 1.

3. Thermodynamics

For the MTZ black hole, the temperature, entropy and mass are given respectively by [28]

T =
2r+ − 1

2π
,

S =
σr+(r+ + 2Gµ)

4G(r+ +Gµ)2
r2

+ =
σ

4G
(2r+ − 1) ,

M =
σµ

4π
=
σ(r2

+ − r+)

4πG
. (3.1)
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Notice that the entropy in this case does not satisfy an area law. It is easy to show that

the law of thermodynamics dM = TdS holds. Defining the free energy as F = M − TS
and using relations (3.1), we obtain

FMTZ = − σ

8πG
(2r2

+ − 2r+ + 1) . (3.2)

The free energy (3.2) can be written as

FMTZ = − σ

8πG

(
1 + 2(T − T0)π + 2(T − T0)2π2

)
, (3.3)

where T0 = 1/2π ≈ 0.160 is the critical temperature. For the vacuum TBH black hole

(denoting by ρ+ the horizon for this case) , the temperature, entropy and mass are, respec-

tively,

T =
3ρ2

+ − 1

4πρ+
,

S =
σρ2

+

4G
,

M =
σ(ρ3

+ − ρ+)

8πG
. (3.4)

Then, the free energy of the TBH black hole, using relations (3.4), is

FTBH = − σ

16πG
(ρ3

+ + ρ+) , (3.5)

which can be expanded around the critical temperature T0 as

FTBH = − σ

8πG

(
1 + 2(T − T0)π + 2(T − T0)2π2 + (T − T0)3π3 + . . .

)
. (3.6)

Using (3.3) and (3.6), we can calculate the difference between the TBH and MTZ free

energies. We obtain

∆F = FTBH − FMTZ = − σ

8πG
(T − T0)3π3 + . . . , (3.7)

indicating a phase transition between MTZ and TBH at the critical temperature T0. Match-

ing the temperatures of the MTZ black hole and the TBH we get:

T =
2r+ − 1

2π
=

1

4π

(
3ρ+ −

1

ρ+

)
⇒ r+ =

3ρ+

4
− 1

4ρ+
+

1

2
. (3.8)

It is easily seen that r+ ≤ ρ+, and the inequality is saturated for r+ = ρ+ = 1. We remark

that the temperature T should be non-negative, so r+ ≥ 1
2 for the MTZ black hole and

ρ+ ≥ 1√
3

for the TBH black hole.

Thermodynamically we can understand this phase transition as follows. Using rela-

tions (3.1), (3.4) and (3.8), we find that STBH > SMTZ and MTBH > MMTZ for the

relevant ranges of the horizons r+ or ρ+. If r+ > 1 (T > T0), both black holes have

positive mass. As T > T0 implies FTBH ≤ FMTZ , the MTZ black hole dressed with the

scalar field will decay into the bare black hole. In the decay process, the scalar black hole
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absorbs energy from the thermal bath, increasing its horizon radius (from r+ to ρ+ > r+)

and consequently its entropy. Therefore, in a sense the scalar field is absorbed by the black

hole.

If r+ < 1 (T < T0), both black holes have negative mass, but now FTBH > FMTZ ,

which means that the MTZ configuration with nonzero scalar field is favorable. As a

consequence, below the critical temperature, the bare black hole undergoes a spontaneous

“dressing up” with the scalar field. In the process, the mass and entropy of the black hole

decrease and the differences in energy and entropy are transferred to the heat bath.

At the critical temperature, the thermodynamic functions of the two phases match

continuously, hence, the phase transition is of second order. The order parameter that

characterizes the transition can be defined in terms of the value of the scalar field at the

horizon; using the solution for the scalar field (2.6) we obtain for T < T0,

λφ =

∣∣∣∣∣tanh

√
4πG

3
φ(r+)

∣∣∣∣∣ =

∣∣∣∣
r+ − 1

r+

∣∣∣∣ =
T0 − T
T0 + T

. (3.9)

For T > T0, λφ vanishes. Then the relation (3.7) can be written in terms of the order

parameter λφ as

∆F = FTBH − FMTZ = +
σr3

+

8πG
λ3
φ + . . . (T < T0). (3.10)

The pure AdS space of (2.19) has free energy FAdS = −σ/8πG as easily can be seen

using relations (3.2) or (3.5) with r+ = 1. Then observe that FAdS is the constant term of

both FMTZ in (3.3) and FTBH in (3.6). Hence the difference of free energies of MTZ or TBH

black holes with the free energy of pure AdS space indicates that the configuration (2.19)

is transient between the MTZ and TBH phase transition.

In the next two sections we will find the QNMs of the electromagnetic perturbations of

the MTZ black hole and its charged generalization and compare them with the correspond-

ing QNMs of the TBH. This study will provide additional information on the stability of

the MTZ black hole and its generalization under electromagnetic perturbations. Note that

for the MTZ black hole and its charged generalization, the wave equations, after factor-

ing out the angular parts, are the same. For the TBH, only the function f(r) (eq. (4.2))

changes. There is no change due to the axial or polar character of the perturbation.

4. Analytical Calculation

In this section, we calculate analytically the QNMs of electromagnetic perturbations for

both MTZ and topological black holes. Numerical results will be discussed in section 5.

Our approach is based on the method discussed in [34 – 36]. In order to calculate QNMs,

in general, one solves the wave equation subject to appropriate boundary conditions at

infinity and the horizon. In asymptotically flat spacetime, this can be implemented by a

monodromy method [37]. It is then advantageous to follow Stokes lines which go through

the black hole singularity. In asymptotically (A)dS spacetimes, the calculation simplifies

because the wavefunction vanishes at infinity. Although the monodromy does not enter the

– 6 –
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calculation, in several cases it is still advantageous to follow Stokes lines and analytically

continue the wavefunction through the black hole singularity [34 – 36]. However, this is not

always necessary, if a general solution (or approximation thereof) of the wave equation as

in, e.g., [38] is readily available. In our case, we shall solve the wave equation near the

black hole singularity perturbatively and then analytically continue the wavefunction in

order to match with the expected behaviour at infinity and the horizon, respectively. This

will produce an explicit form of the QNMs for r+ > 1 (Gµ > 0). For r+ < 1 (Gµ < 0), we

do not have explicit analytical expressions. Instead, we obtain a lower bound which is in

accord with numerical results.

Electromagnetic perturbations obey the wave equation

f(r)
d

dr

(
f(r)

dΨω

dr

)
+

[
ω2 −

(
ξ2 +

1

4

)
f(r)

r2

]
Ψω = 0 , (4.1)

where

fMTZ(r) = r2 −
(

1 +
Gµ

r

)2

, fTBH(r) = r2 − 1− 2Gµ

r
. (4.2)

It may be cast into a Schrödinger-like form if written in terms of the tortoise coordinate

defined by
dx

dr
=

1

f(r)
. (4.3)

We obtain

− d2Ψω

dx2
+ V (x)Ψω = ω2Ψω , (4.4)

where the potential is

V [x(r)] =

(
ξ2 +

1

4

)
f(r)

r2
. (4.5)

For QNMs, we impose the boundary condition Ψω → 0 as r→∞, since the potential does

not vanish for large r. At the horizon (x→ −∞), we demand Ψω ∼ eiωx (ingoing wave).

Near the black hole singularity (r ∼ 0), the tortoise coordinate (4.3) may be approxi-

mated by

x ≈ −Gµ
aλ

(
r

Gµ

)λ
, (4.6)

where a = 1, λ = 3 for MTZ and a = 2, λ = 2 for TBH. In arriving at (4.6), we choose the

integration constant so that x = 0 at r = 0. The potential near the singularity is

V (x) ≈ − A
x1+1/λ

, A =

(
ξ2 +

1

4

)
1

(aGµ)1−1/λ(−λ)1+1/λ
. (4.7)

We will solve the wave eq. (4.4) by treating the potential (4.7) as a perturbation. The

zeroth-order solutions are

Ψ±0 = e±iωx (4.8)

and the first-order corrections are

Ψ±1 (x) =
1

2iω

∫ x

0
dx′ei(ω−iε)(x−x

′)V (x′)Ψ±0 (x′)− 1

2iω

∫ x

0
dx′e−i(ω+iε)(x−x′)V (x′)Ψ±0 (x′)

(4.9)
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where we included a small ε > 0 to render integrals finite. We shall work with general

values of λ in the potential (4.7) and take the limit of interest (λ→ 2, 3) at the end of the

calculation. The desired solution will be a linear combination of the above wave functions,

Ψω(x) = A+(Ψ+
0 + Ψ+

1 ) +A−(Ψ−0 + Ψ−1 ) . (4.10)

Asymptotically, it behaves as

Ψω(x) ≈
(
A+ + ie

iπ
2λ
AΓ(−1/λ)

(2ω)1−1/λ
A−

)
eiωx +

(
A− − ie−

iπ
2λ
AΓ(−1/λ)

(2ω)1−1/λ
A+

)
e−iωx . (4.11)

At large r (x→ +∞), the tortoise coordinate (4.3) may be approximated by

x ≈ x0 −
1

r
, x0 =

∫ ∞

0

dr

f(r)
(4.12)

and the potential (4.7) is

V (x) ≈ ξ2 +
1

4
. (4.13)

Since we are interested in the asymptotic form of quasi-normal frequencies, we may ignore

the potential (V (x) . ω2). We obtain the eigenfunction for large r (x ∼ x0)

Ψω(x) ∼ sinω(x− x0) , (4.14)

where we applied the boundary condition Ψω → 0 as r →∞ (x→ x0).

This is matched by the linear combination (4.11) provided

A+ + ie
iπ
2λ
AΓ(−1/λ)

(2ω)1−1/λ
A− = −e−2iωx0

(
A− − ie−

iπ
2λ
AΓ(−1/λ)

(2ω)1−1/λ
A+

)
(4.15)

of eigenfunction (eqs. (4.8) and (4.9)) in the vicinity of the singularity.

Next, we approach the horizon (x→ −∞) by analytically continuing (4.10) to negative

x. This amounts to a rotation by −π in the complex x-plane. For x < 0, we obtain

from (4.9), using eqs. (4.7) and (4.8),

Ψ±1 (x) =
A

2iω
eiπ/λ

∫ −x

0

dx′

x′ 1+1/λ

(
ei(ω+iε)(x+x′) − e−i(ω−iε)(x+x′)

)
e∓iωx

′
. (4.16)

Taking the limit x→ −∞, we obtain the behavior near the horizon

Ψω(x) ≈
(
A+ − ie

3iπ
2λ
AΓ(−1/λ)

(2ω)1−1/λ
A−

)
eiωx +

(
A− + ie

iπ
2λ
AΓ(−1/λ)

(2ω)1−1/λ
A+

)
e−iωx . (4.17)

Since we want an ingoing wave (Ψω ∼ eiωx) at the horizon, we obtain the constraint on

the coefficients

A− + ie
iπ
2λ
AΓ(−1/λ)

(2ω)1−1/λ
A+ = 0 . (4.18)

For compatibility with the other constraint (4.15), we ought to have
∣∣∣∣∣
e−2iωx0 + e

iπ
2λC 1

1− Ce− iπ
2λ e−2iωx0 Ce− iπ

2λ

∣∣∣∣∣ = 0 , (4.19)
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where C = iAΓ(−1/λ)(2ω)−1+1/λ. We deduce

e2iωx0 = 2e−
iπ
2λC , (4.20)

where we discarded terms which were of order higher than linear in C. Solving for ω, we

obtain the quasi-normal frequencies

ωn =
nπ

x0
+ o(lnn) . (4.21)

Thus the asymptotic behaviour is completely determined by the parameter x0 (eq. (4.12)).

In the case of MTZ black holes, f(r) has four roots,

r± =
1

2

(
1±

√
1 + 4Gµ

)
, r̄± =

1

2

(
−1±

√
1− 4Gµ

)
. (4.22)

For Gµ > 0, the horizon is at r+ and r+ > 1. We obtain

x0 =
1

2(r+ − r−)
ln
r−
r+

+
1

2(r̄+ − r̄−)
ln
r̄−
r̄+

. (4.23)

For large Gµ, the quasi-normal frequencies are

ωn ≈ 2(1 − i)r+n (4.24)

matching the behaviour in five-dimensional AdS space.

For small (positive) Gµ, we find

ωn ≈ −2ni

(
1 +

2Gµ

πi
lnGµ

)
. (4.25)

Continuing to negative values of Gµ is not straightforward. The above discussion is not

applicable, because going beyond the horizon (as we approach the singularity) we encounter

a potential well at r− < r < r+ for Gµ > −1/4 (horizon 1/2 < r+ < 1) which admits

bound states and alters the behaviour of quasi-normal frequencies. The minimum of the

potential provides a lower bound to the frequencies. By setting V ′(r) = 0, we find the

minimum at

rmin = −2Gµ . (4.26)

At the minimum,

V (rmin) = −
(
ξ2 +

1

4

){
1

16(Gµ)2
− 1

}
. (4.27)

It is also easily seen that V ′′(rmin) > 0, showing that r = rmin is indeed a minimum. The

eigenfrequencies have imaginary part

ωI ≥ −
√
|V (rmin)| , (4.28)

which is verified by numerical results. The lowest frequency is close to the lower bound

(4.28).
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In the TBH case, the horizon is given by

r+ = 2<(eiπ/6s) , s =

(√
1

27
− (Gµ)2 − iGµ

)1/3

, (4.29)

where |Gµ| < 3−3/2. The other two roots of f(r) are also real,

r− = −2<(e−iπ/6s) , r′− = 2=s . (4.30)

We obtain

x0 = − r−
3r2
− − 1

ln
r−
r+
− r′−

3r′2− − 1
ln
r′−
r+

. (4.31)

For small Gµ, we have

ωn ≈ −2ni

(
1 +

4Gµ

πi
lnGµ

)
(4.32)

to be compared with the behaviour of MTZ QNMs (4.25) near the transition point. The

discrepancy is of second order.

For large Gµ, the above formulae for the roots read

r+ =

(
Gµ+

√
(Gµ)2 − 1

27

)1/3

+

(
Gµ−

√
(Gµ)2 − 1

27

)1/3

≈ (2Gµ)1/3 ,

r− = −e− iπ3
(
Gµ+

√
(Gµ)2 − 1

27

)1/3

− e+ iπ
3

(
Gµ−

√
(Gµ)2 − 1

27

)1/3

≈ −e− iπ3 r+ ,

r′− = (r−)∗ ≈ −e+ iπ
3 r+ . (4.33)

Then

ωn ≈ nr+

(
3
√

3

4
− i9

4

)
. (4.34)

For Gµ < 0, we encounter a potential well behind the horizon. Arguing as in the MTZ

case, we obtain a lower bound

ωI ≥ −
√
|V (rmin)| (4.35)

In the TBH case, rmin = −3Gµ and

V (rmin) = −
(
ξ2 +

1

4

){
1

27(Gµ)2
− 1

}
(4.36)

5. Numerical Results

5.1 The Method

Another method of studying the same problem is the procedure of Horowitz and Hubeny [4].

We briefly review the method as we applied it to our problem. After performing the

transformation Ψω(r) = ψω(r)e−iωr∗ , the wave equation (4.1) becomes

f(r)
d2ψω(r)

dr2
+

(
df(r)

dr
− 2iω

)
dψω(r)

dr
=

(
ξ2 + 1

4

)

r2
ψω(r) . (5.1)
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The change of variables r = 1/x (not to be confused with the tortoise coordinate (4.3))

yields an equation of the form

s(x)

[
(x− x+)2 d

2ψω(x)

dx2

]
+ t(x)

[
(x− x+)

dψω(x)

dx

]
+ u(x)ψω(x) = 0 ,

where x+ = 1/r+. It turns out that s(x), t(x) and u(x) are polynomials of third degree for

MTZ black holes and of second degree for TBHs. Thus,

s(x) = s0 + s1(x− x+) + s2(x− x+)2 + s3(x− x+)3,

t(x) = t0 + t1(x− x+) + t2(x− x+)2 + t3(x− x+)3,

u(x) = u0 + u1(x− x+) + u2(x− x+)2 + u3(x− x+)3 .

Expanding the wavefunction around the (inverse) horizon x+,

ψω(x) =

∞∑

0

an(ω)(x − x+)n , (5.2)

we arrive at a recurrence formula for the coefficients,

an(ω) = − 1

n(n− 1)s0 + nt0 + u0

n−1∑

m=n−3

[m(m− 1)sn−m +mtn−m + un−m]am(ω) . (5.3)

We note that the few coefficients am(ω) with negative index m which will appear for n < 2

should be set to zero, while a0(ω) is set to one. Since the wave function should vanish at

infinity (r →∞, x = 0), we deduce

ψω(0) ≡
∞∑

0

an(ω)(−x+)n = 0 . (5.4)

The solutions of this equation are precisely the quasi-normal frequencies.

5.2 MTZ Black Holes

We compute the QNMs for the MTZ black holes by solving eq. (5.4) numerically. As a

first step we draw the contours <[ψω(0)] = 0 and =[ψω(0)] = 0 on the complex ω−plane

and check the points of intersection. This provides good initial values for the subsequent

Müller root-finding technique [39]; in addition it provides an overview of the (approximate)

values of the quasi-normal frequencies. In figure 1 we show sample contours for the case

r+ = 5.0, ξ = 1.0. We note that the parameter ξ does not seem to play a significant role

in the behaviour of quasi-normal frequencies, so we set it to a typical value (ξ = 1.0) from

now on.

From figure 1, it is evident that the QNMs lie on a straight line with negative slope

and their spacing is more or less constant. In fact the spacing changes a little as we move

to the right and eventually attains an asymptotic value, which should be compared with

the analytical results of section 4.

– 11 –
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MTZ: E/M perturbations, rp=5.00, xi=1.0
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Figure 1: Contours displaying the lines <[ψ0(ω)] = 0 (dashed lines) and =[ψ0(ω)] = 0 (dotted

lines) on the complex ω−plane for MTZ Black Holes and r+ = 5.0.

Figure 2 refers to r+ = 0.97, a typical value of the horizon radius smaller than the

critical value r+ = 1.0. The striking feature of the QNMs here is that the slope is positive.

In addition, the intersections no longer lie along a straight line and the spacing changes

substantially as we move through the QNMs.

To compare with analytical results, we note that equations (4.21) and (4.23) yield the

asymptotic expression for QNMs. We may check that the relative sign of ∆ωR and ∆ωI is

negative, therefore a larger ωR will correspond to an algebraically smaller ωI , as shown in

figure 1.

For small mass (r+ ≈ 1), the analytical result (4.25) yields the asymptotic expression

for the spacing of QNMs,

∆ωR ≈ −
4Gµ

π
lnGµ, ∆ωI ≈ −2 . (5.5)

In table 1, we show the results for some indicative values of the horizon radius with

r+ ≥ 1.0. We observe that the agreement between analytical and numerical results is quite

good. The agreement is exact for r+ = 1.0. In fact, the slope tends to minus infinity as

we approach r+ = 1.0. We should point out that ωI < 0, always, so there is no sign of

instability.

In table 2 we show the QNMs for r+ = 0.97, as an example of horizon radius smaller

than the critical value r+ = 1.0, along with the differences between consecutive values

– 12 –
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MTZ: E/M perturbations, rp=0.97, xi=1.0

omega_R

omega_I

Figure 2: Contours displaying the lines <[ψ0(ω)] = 0 (dashed lines) and =[ψ0(ω)] = 0 (dotted

lines) on the complex ω−plane for MTZ Black Holes and r+ = 0.97.

r+ Gµ T ∆ωAnaR ∆ωAnaI ∆ωNumR ∆ωNumI

10.000 90.00 3.023 18.96 −20.26 19.00 −20.15

5.000 20.00 1.434 8.91 −10.25 8.77 −10.45

2.000 2.000 0.477 2.75 −4.21 2.70 −4.14

1.050 0.0525 0.175 0.32 −2.15 0.27 −2.16

1.000 0.000 0.160 0.00 −2.00 0.00 −2.00

Table 1: Comparison analytical and numerical values of QNMs of EM perturbations of MTZ Black

Holes.

of QNMs. Note that in this case Gµ = −0.029, T = 0.150. These are the exact QNMs

presented in figure 2. It appears that, apart from the change of the sign of the slope, there

is a novel phenomenon: the quasi-normal frequencies converge toward the imaginary axis,

i.e., their real part decreases. There is only a finite number of QNMs for r+ < 1.0. This

behaviour has already been predicted analytically in section 4; eq. (4.28) yields a prediction

for the lowest possible imaginary part of the frequencies. The result is ωI ≥ −9.54i, which is

indeed respected by the imaginary parts appearing in table 2. Although not fully justified,

using the analytical result (5.5), we deduce the estimates |∆ωAnaR | ≈ 0.131, |∆ωAnaI | ≈
2.000. Checking against the numerical values in table 2, we see that the values in the
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ωNumR ωNumI ∆ωNumR ∆ωNumI

0.973 −1.496 - -

0.864 −3.351 0.109 1.905

0.701 −5.239 0.163 1.888

0.486 −7.114 0.215 1.875

0.143 −8.980 0.343 1.866

Table 2: Numerical results for quasi-normal frequencies of EM perturbations for MTZ Black Holes

with r+ = 0.97. In the last two columns we list the differences of consecutive QNMs.

third column (real part) are of the same order of magnitude as the analytical prediction,

whereas the values in the fourth column (imaginary part) are quite close to the analytical

estimate 2. However, the variations are significant. If one further decreases the value of

the horizon, the number of QNMs decreases until they finally disappear. The behavior of

QNMs for such horizons may be viewed as modifications of the critical point r+ = 1.0. In

the latter case, the first quasi-normal frequency is ω = 1.0 − 1.5i, followed by frequencies

with imaginary parts ωI = −3.5,−5.5,−7.5, . . .. Unlike the points below criticality, for

r+ = 1.0, the real parts do not change and there is no lower bound.

To summarize our findings, for r+ > 1, figure 1 shows that the QNMs have a negative

slope and hence large values of ωR correspond to large values of ωI . Then as r+ → 1 the

slope tends to minus infinity. At r+ = 1, ωR = 1, while the spacing of ωI is exactly 2. Note

that the critical point r+ = 1 corresponds to the pure AdS configuration of (2.19). For

r+ < 1, figure 2 shows that the QNMs have a positive slope and hence large values of ωR
correspond to small values of ωI . We attribute this behavior to a phase transition, as one

passes through the critical value r+ = 1, of the TBH to the MTZ black hole configuration.

Notice that for any perturbation of a black hole background there are two characteristic

parameters that control its behaviour: the oscillation time scale which is given by τR ≡
1/ωR and the damping time scale given by τI ≡ 1/ωI . In the case of r+ > 1 the scalar field

is absorbed by the black hole and the damping time scale τI is small, so the perturbations

in this case fall off rather rapidly with time. For r+ < 1 the black hole is dressed up with

the scalar field and the damping time scale τI is large and perturbations last longer. At the

critical point of r+ = 1 we have a change of slope, indicating a transient configuration. This

behaviour may be associated with the second order phase transition discussed in section 3.

5.3 Topological Black Holes

We now turn to the case of topological black holes (TBHs). The asymptotic value of quasi-

normal frequencies for r+ ≥ 1 is given by eqs (4.21) and (4.31). The relative sign of ∆ωR,

and ∆ωI is again negative.

At small masses, eq. (4.32) provides an approximate expression for QNMs in the limit

of small horizon (mass) which yields the spacings

∆ωR ≈ −
8Gµ

π
lnGµ , ∆ωI ≈ −2 . (5.6)
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r+ Gµ T ∆ωAnaR ∆ωAnaI ∆ωNumR ∆ωNumI

12.692 1015.43 3.023 16.43 −28.55 16.50 −28.50

6.055 107.97 1.434 7.73 −13.60 7.65 −13.70

2.155 3.93 0.477 2.41 −4.78 2.52 −4.81

1.050 0.054 0.175 0.29 −2.16 0.26 −2.16

1.000 0.000 0.160 0.00 −2.00 0.00 −2.00

Table 3: Comparison of analytical and numerical values of QNMs of EM perturbations for TBHs.

ωNumR ωNumI ∆ωNumR ∆ωNumI

0.972 −1.446 - -

0.859 −3.352 0.113 1.906

0.689 −5.240 0.170 1.888

0.453 −7.115 0.236 1.875

Table 4: Numerical results for quasi-normal frequencies of EM perturbations for TBHs with r+ =

0.97. In the last two columns we list the differences of consecutive QNMs.

The comparison of these analytical results to the numerical results of section 5 is shown

in table 3. We have used values for the horizon which correspond, through eq. (3.8),

to the respective values of MTZ black holes that we showed above in table 1 (matching

corresponding temperatures). The agreement between analytical and numerical results is

very good. In addition, ωI is again negative, showing no sign of instability.

Next we show the QNMs for r+ = 0.97 (eq. (3.8) yields approximately the same value

as in the MTZ case for the same temperature), along with differences between consecutive

values of quasi-normal frequencies. Note that in this case, Gµ = −0.029, T = 0.150.

Similar behaviour to MTZ black holes is observed: the slope below criticality becomes

positive, while for r+ > 1 it is negative. Again, to compare with analytical expressions,

eq. (5.6) gives the estimate |∆ωAnaR | ≈ 0.259, |∆ωAnaI | ≈ 2.000. Checking against the

entries in table 4, we find that the values in its third and fourth columns (real and imaginary

parts, respectively) are of the same order of magnitude as the analytical estimates, albeit

with sizeable variations. The lower bound for the imaginary part, given by eqs. (4.28)

and (4.36), reads in this case, ωI ≥ −7.33, which is close to the lowest imaginary part in

table 4.

6. Conclusions

We calculated the QNMs of electromagnetic perturbations of the MTZ black hole and

topological black holes. We performed this calculation both analytically and numerically

with fairly good agreement. We found that there is a change in the slope of the QNMs

as we decrease the value of the horizon radius below a critical value, and we argued that

this change signals a phase transition of a vacuum topological black hole toward the MTZ

black hole with scalar hair.
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One may attribute this change in behaviour to the dynamics of the scalar field and

associate it with a second-order phase transition [28]. For small black holes (r+ < 1) the

scalar field is dressing up the bare topological black hole introducing an order parameter λφ
(see (3.10)) which controls the dynamics of the scalar field. A second-order phase transition

for small black holes occurs in more general configurations (including charge, etc) as studies

of general scalar, electromagnetic and gravitational perturbations show [40]. We have also

found that the vacuum AdS solution at the critical temperature is a transient configuration

of the change of phase of the topological black hole to a configuration with scalar hair.

One interesting aspect of small MTZ black holes is that the quasi-normal frequencies

converge toward the imaginary axis, i.e., their real part decreases and after the first few

quasi-normal frequencies, it vanishes, indicating that for r+ < 1 there are only a finite

number of QNMs. We showed that the finite number of such modes for small horizons (r+ <

1) is due to the existence of bound states behind the horizon, which is an unobservable

region. This curious phenomenon is worthy of further investigation.
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